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Chromium: A Stream-Processing Framework for Interactive Rendering on Clusters 
Category: System (Paper ID: 60) 

Abstract 

We describe Chromium, a system for manipulating streams of 
graphics API commands on clusters of workstations. Chromium’s 
stream filters can be arranged to create sort-first and sort-last par- 
allel graphics architectures that, in many cases, support the same 
applications while using only commodity graphics accelerators. In 
addition, these stream filters can be extended programmatically, al- 
lowing the user to customize the stream transformations performed 
by nodes in a cluster. Because our stream processing mechanism 
is completely general, any cluster-parallel rendering algorithm can 
be either implemented on top of or embedded in Chromium. In 
this paper, we give examples of real-world applications that use 
Chromium to achieve good scalability on clusters of workstations, 
and describe other potential uses of this stream processing tech- 
nology. By completely abstracting the underlying graphics archi- 
tecture, network topology, and API command processing seman- 
tics, we allow a variety of applications to run in different environ- 
ments. 
CR Categories: 1.3.2 [Computer Graphics]: Graphics Systems- 
Distributdnetwork graphics; 1.3.4 [Computer Graphics]: Graph- 
ics Utilities-Software support, Virtual device interfaces; C.2.2 
[Computer-Communication Networks]: Network Protocols- 
Applications; C.2.4 [Computer-Communication Networks]: Dis- 
tributed Systems-Client/Server, Distributed Applications 
Keywords: Scalable Rendering, Cluster Rendering, Parallel Ren- 
dering, Tiled Displays, Remote Graphics, V i 1  Graphics, Stream 
Processing 

1 Introduction 

The performance of consumer graphics hardware is increasing at 
such a fast pace that a large class of applications can no longer 
utilize the full computational potential of the graphics processor. 
This is largely due to the slow serial interface between the host and 
the graphics subsystem. Recently, clusters of workstations have 
emerged as a viable option to alleviate this bottleneck. However, 
cluster rendering systems have largely been focused on providing 
specific algorithms, rather than a general mechanism for enabling 
interactive graphics on clusters. The goal of our work is to allow 
applications to more easily utilize the aggregate rendering power of 
a collection of commodity graphics accelerators housed in a cluster 
of workstations, without imposing a specific scalability algorithm 
that may not meet an application’s needs. 

To achieve this goal, we have designed and built a system that 
provides a generic mechanism for manipulating streams of graph- 

ics API commands. This system, called Chromium, can be used 
as the underlying mechanism for any existing cluster-graphics al- 
gorithm by having the algorithm use OpenGL to move geometry 
and imagery across a network as required. In addition, existing 
OpenGL applications can use a cluster with very few modifications, 
because Chromium provides an industry-standard graphics API that 
virtualizes the disjoint rendering resources present in a cluster. In 
some cases, the application does not even need to be recompiled. 
Compatibility with existing applications may accelerate the adop- 
tion of rendering clusters and high resolution displays, encouraging 
the development of new applications that exploit resolution and par- 
allelism. 

Chromium’s stream processors are implemented as modules that 
can be interchanged and combined in an almost completely arbi- 
trary way. By modifying the configuration of these stream pro- 
cessors, we have built sort-first and sort-last parallel graphics ar- 
chitectures that can, in many cases, support the same applications 
without recompilation. Unlike previous work, our approach does 
not necessarily require that any geometry be moved across a net- 
work (although this may be desirable for load-balancing reasons). 
Instead, applications can issue commands directly to locally housed 
graphics hardware, thereby achieving the node’s full advertised ren- 
dering performance. Because our focus is on clusters of commod- 
ity components, we only consider architectures that do not require 
communication between stages in the pipeline that are not normally 
exposed to an application. For example, a sort-middle architecture, 
which requires communication between the geometry and rasteri- 
zation stages, is not a good match for our system. 

Chromium’s stream processors can be extended programmati- 
cally. This added flexibility allows Chromium users to solve more 
general problems than just scalability, such as integration with an 
existing user interface, stylized drawing, or application debugging. 
This extensibility is one of Chromium’s key strengths. Because we 
simply provide a programmable filter mechanism for graphics API 
calls, Chromium can implement many different underlying algo- 
rithms. This model can be thought of as an extension of Voorhies’s 
virtual graphics pipeline [34], which insulates applications from the 
details of the underlying implementations of a common API. 

2 Background and Related Work 

2.1 Cluster Graphics 
Clusters have long been used for parallelizing traditionally non- 
interactive graphics tasks such as ray-tracing, radiosity [5,26], and 
volume rendering [6]. Other cluster-parallel rendering efforts have 
largely concentrated on exploiting inter-frame parallelism rather 
than trying to make each individual frame run faster [21]. We are in- 
terested in enabling fast, interactive rendering on clusters, so these 
techniques tend to be at most loosely applicable to our domain. 

In the last few years, there has been growing interest in using 
clusters for interactive rendering tasks. Initially, the goal of these 
systems was to drive large tiled displays. Humphreys and Hanrahan 
described an early system designed for 3D graphics [9]. Although 
the system described in that paper ran on an SGI InfiniteReality, it 
was later ported to a cluster of workstations. At first, their cluster- 
based system, called WireGL, only allowed a single serial applica- 
tion to drive a tiled display over a network [7]. WireGL used tra- 
ditional sort-first parallel rendering techniques to achieve scalable 
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display size with minimal impact on the application’s performance. 
The main drawback of this system was its poor utilization of the 
graphics resources available in a cluster. Because it only focused on 
display resolution, applications would rarely run faster on a cluster 
than they would locally. 

Other approaches focused on scalable rendering rates. Samanta 
et al. described a cost-based model for load-balancing rendering 
tasks among nodes in a cluster, eventually redistributing the re- 
sulting non-overlapping pixel-tiles to drive a tiled display [30,32]. 
They then extended this technique to allow for tile overlap, creat- 
ing a hybrid sort-first and sort-last algorithm that could effectively 
drive a single display [31]. All of these algorithms required the 
full replication of the scene database on each node in the cluster, 
so further work was done to only require partial replication, trad- 
ing off memory usage for efficiency [29]. Although these papers 
present an excellent study of differing data-management strategies 
in a clustered environment, they all provide algorithms rather than 
mechanisms. Applying one of these techniques to a big-data visu- 
alization problem would require significant reworking of existing 
software. 

A different approach to dataset scalability was taken by 
Humphrcys et al. when they integrated a parallel interface into 
WireGL [8]. By posing as the system’s OpenGL driver, WireGL 
intercepts OpenGL commands made by an application (or multi- 
ple applications), and generates multiple new command sequences, 
each represented in a compact wire protocol. Each sequence is then 
transmitted over a network to a different server. Those servers man- 
age image tiles, and execute the commands encoded in the streams 
on behalf of the client. Finally, the resulting framebuffer tiles are 
extracted and transmitted to a compositing server for display. Or- 
dering between streams resulting from a parallel application is con- 
trolled using the parallel immediate mode graphics extensions pro- 
posed by Igehy et al [lo]. WireGL can use either software-based 
image reassembly or custom hardware such as Lightning-2 [33] to 
reassemble the resulting image tiles and form the final output. This 
approach to cluster rendering allows existing applications to be par- 
allelized easily, since it is built upon a popular, industry-standard 
API. However, by imposing a sort-first architecture on the resulting 
application, it can be difficult to load-balance the graphics work. 
Load-balancing is usually attempted by using smaller tiles, but this 
will tend to cause primitives to overlap more tiles, resulting in ad- 
ditional load on the network and reduced scalability. More funda- 
mentally, WireGL requires that all geometry be moved over a net- 
work every frame, but today’s networks are not fast enough to keep 
remote graphics cards busy. 

2.2 Stream Processing 

Continual growth in typical dataset size and network bandwidth has 
made strcam-based analysis a hot topic for many different disci- 
plines, such as telephone record analysis [4], multimedia, render- 
ing of remotely stored 3D models 1281, database queries [2], and 
theoretical computer science [17]. In these domains, streams are an 
appropriate computational primitive because large amounts of data 
arrive continuously, and it is impractical or unnecessary to retain 
the entire data set. In the broadest sense, a stream is an ordered 
sequence of records. Applications designed to operate on streams 
only access the elements of the sequence in order, although it is pos- 
sible to buffer a potion of a stream for more global analysis. Any 
stream processing algorithm must operate on a potentially infinite 
input set using only finite resources. 

Many of the traditional techniques used to solve problems in 
computer graphics can be thought of as stream processing algo- 
rithms. Immediate-mode rendering is a classic example. In this 
graphics model, an unbounded sequence of primitives is sent one at 
a time through a narrow API. The graphics system processes each 

primitive in turn, using only a finite framebuffer (and possibly tex- 
ture memory) to store any necessary intermediate results. Because 
such a graphics system does not have memory of past primitives, 
its computational expressiveness is limited*. Owens et al. imple- 
mented an OpenGL-based polygon renderer on Imagine, a pro- 
grammable stream processor [l8]. Using Imagine, they achieved 
performance that is competitive with custom hardware while en- 
abling greater programmability at each stage in the pipeline. 

Mohr and Gleicher demonstrated that a variety of stylized draw- 
ing techniques could be applied to an unmodified OpenGL applica- 
tion by only analyzing and modifying the stream of commands [15]. 
They intercept the application’s MI commands by posing as the 
system’s OpenGL driver, in exactly the same way Chromium ob- 
tains its command source. Although some of their techniques re- 
quire potentially unbounded memory, some similar effects can be 
achieved using chromium and multiple nodes in a cluster. 

3 System Architecture 

The overall design of Chromium was influenced by Stanford’s 
WireGL system [SI. Although the sort-first architecture imple- 
mented by WireGL is fairly restrictive, one critical aspect of the 
design led directly to Chromium: The wire protocol used to move 
image tiles from the servers to the compositor is the same as 
the networked-OpenGL protocol used to move geometry from the 
clients to the servers. In effect, WireGL’s servers themselves be- 
come clients of a second parallel rendering application, which uses 
imagery as its fundamental drawing primitive. This means that the 
compositing node is not special; in fact, it is just another instance 
of the same network server executing OpenGL commands and re- 
solving ordering constraints on behalf of some parallel client. 

If we consider a sequence of OpenGL commands to be a stream, 
WireGL provides three main stream “filters”. First, it can sort a 
serial stream into tiles. Next, it can dispatch a stream to a local im- 
plementation of OpenGL. Finally, W M L  can read back a frame- 
buffer and generate a new stream of imagedrawing commands. In 
WireGL, these stream transformations can only be realized at spe- 
cific nodes in the cluster (e.g., an application’s stream can only be 
sorted). To arrive at Chromium’s design, we realized that it would 
be useful to perform other transformations on MI streams, and it 
would also be necessary to arrange cluster nodes in a more generic 
topology than WireGL’s many-to-many-to-few arrangement. 

3.1 Cluster Nodes 

Chromium users begin by deciding which nodes in their cluster will 
be involved in a given parallel rendering run, and what communi- 
cation will be necessary. This is specified to a centralized configu- 
ration system as a directed acyclic graph. Nodes in this graph rep- 
resent computers in a cluster, while edges represent network traffic. 
Each node is actually divided into two parts: a transformation por- 
tion and a serialization potion. 

The transformation portion of a node takes a single stream of 
OpenGL commands as input, and produces zero or more streams 
of OpenGL commands as output. The mapping from input to out- 
put is completely arbitrary. The output streams (if any) are sent 
over a network to another node in the cluster to be serialized and 
transformed again. Stream transformations are described in greater 
detail in section 3.2. 

‘Because most graphics MI’S have some mechanism to force data to 
flow back towards the host (i.e., glReadPixels), graphics hardware is actu- 
ally not a purely feed-forward stream processor. This fact has been exploited 
to perform more general computation using graphics hardware [19,23], and 
extensions to the graphics pipeline have been proposed to further generalize 
its computational expressiveness [13]. 

2 
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Application 

lwe6ut 

The serialization portion of a node consumes one or more in- 
dependent OpenGL streams, each with its own associated graph- 
ics context, and produces a single OpenGL stream as output. This 
task is analogous to the scheduler in a multitasking operating sys- 
tem; the serializer chooses a stream to “execute”, and copies that 
stream to its output until the stream becomes “blocked”. It then se- 
lects another input stream, performs a context switch, and continues 
copying. Streams block and unblock via extensions to the OpenGL 
API that provide barriers and semaphores, as proposed by Igehy et 
a1 [lo]. These synchronization primitives do not block the issuing 
process, but rather encode ordering constraints that will be enforced 
by the serializer. Because the serializer may have to switch be- 
tween contexts very frequently, we use a hierarchical OpenGL state 
tracker similar to the one described by Buck et a1 [3]. This state 
representation allows for the efficient computation of the difference 
between two graphics contexts, allowing for fine-grained sharing of 
rendering resources. 

A node’s serializer can be implemented in one of two ways. 
Graph nodes that have one or more incoming edges are realized 
by Chromium’s network server, and are referred to as server nodes. 
Servers manage multiple incoming network connections, interpret- 
ing messages on those connections as packed representations of 
OpenGL streams. 

On the other hand, nodes that have no incoming edges must 
generate their (already serial) OpenGL streams programmati- 
cally. These nodes are called client nodes. Clients obtain their 
streams from standalone applications that use the OpenGL API. 
Chromium’s application launcher causes these programs to load our 
OpcnGL shared library on startup. Chromium’s OpenGL library 
injects the application’s commands into the node’s stream trans- 
former, so the application does not have to be modified to initialize 
or load Chromium. If there is only one client in the graph, it will 
typically be an unmodified off-the-shelf OpenGL application. For 
graphs with multiple clients, the applications will have to specify 
the ordering constraints on their respective streams. 

a . 
a 

3.2 OpenGL Stream Processing 

Stream transformations are performed by OpenGL “Stream Pro- 
cessing Units”, or SPUs. SPUs are implemented as dynamically 
loadable libraries that provide the OpcnGL interface, so each node’s 
serializer will load the required libraries at run time and build an 
OpenGL dispatch table. SPUs are normally designed as generically 
as possible so they can be used anywhere in a graph. 

A simple example configuration is shown in figure 1. The client 
loads the t i l e s o r t  SPU, which incoprates all of the sort-first 
stream processing logic from WireGL. The servers use the render 
SPU, which dispatches the incoming streams directly to their local 
graphics accelerators. This configuration has the effect of running 
the unmodified client application on a tiled display using sort-first 
stream processing, giving identical semantics and similar perfor- 
mance to the tiled display system described by Humphreys et a1 [7]. 
Notice that in figure 1, the graph edges originate from the t i l e s o r t  
SPU, not the application itself. This convention is used because the 
SPU in fact manages its own network resources, originates connec- 
tions to servers, and generates traffic. 

3.3 SPU Chains 

A node’s stream transformation need not be performed by only a 
single SPU; serializers can load a linear chain of SPUs at run time. 
During initialization, each SPU receives an OpenGL dispatch table 
for the next SPU in its local chain, meaning simple SPUs can be 
chained together to achieve more complex results. Using this fea- 
ture, a SPU might intercept and modify (or discard) calls to one par- 
ticular OpenGL function and pass the rest untouched to its down- 

I - I  

Figure 1: A simple Chromium configuration. In this example, 
a serial application is made to run on a tiled display using a 
sort-first stream processor called t i l e s o r t .  

stream SPU. This allows a SPU, for example, to adjust the graphics 
state slightly to achieve a different rendering style. 

One example of such a SPU is a “wireframe style” filter. This 
SPU issues a glPolygonMode call to its downstream SPU at startup 
to set the drawing mode to wireframe. It then passes all OpenGL 
calls directly through except glPolygonMode, which it discards, 
preventing the application from resetting the drawing mode. Note 
that Chromium does not require a stream to be rendered on a dif- 
ferent node from where it originated, it is straightforward for the 
client to load the render SPU as part of its chain. In this way, an 
application’s drawing style can be modified while it runs directly 
on the node’s graphics hardware, without any network traffic. 

SPU chains are always initialized in back-to-front order, starting 
with the final SPU in the chain. At initialization, a SPU must return 
a list of all the functions that it implements. A SPU that wants to 
pass a function call through to the SPU immediately downstream 
can return the downstream SPU’s function pointer as its own. Be- 
cause there is no indirection in this model, passing OpenGL calls 
through multiple SPUs does not incur any performance overhead. 
Such function pointer copying is common in Chromium; as long as 
SPUs copy and change OpenGL function tables using only our pro- 
vided API’s, they can change their own exported interface on the fly 
and automatically propagate those changes throughout the node. 

3.4 SPU Inheritance 

A SPU need not export a complete OpenGL interface. Instead, 
SPUs benefit from a single-inheritance model in which any func- 
tions not implemented by a SPU can be obtained from a “parent”, 
or ‘‘super” SPU. The SPU most commonly inherited from is the 
passthrough SPU, which passes all of its calls to the next SPU in 
its node’s chain. The wireframe drawing SPU mentioned in the pre- 
vious section would likely be implemented this way-it would im- 
plement only glPolygonMode, and rely on the passthrough SPU 
to handle all other OpenGL functions. At initialization, each SPU 
is given a dispatch table for its parent. For example, when the wire- 
frame SPU wishes to set the drawing mode to wireframe during 

3 



Paper #60 - Chromium: A Stream Processing Framework for Interactive Rendering on Clusters 

initialization, it calls the passthrough SPU’s implementation of 
glPolygonMode. 

3.5 Provided Tools and SPUs 

Chromium provides four libraries that encapsulate frequently per- 
formed stream operations. The first is a stream packing library. This 
library takes a sequence of commands and produces a serialized en- 
coding of the commands and their arguments. Although this library 
is normally used to prepare commands for network transmission, it 
can also be used to buffer a group of commands for later analysis, 
as described in section 4.3. We use a very similar encoding method 
to the one described by Buck et a1 [3]. It incurs almost no wasted 
space, retains nahual argument alignment, and allows a group of 
command “opcodes” and their arguments to be sent with a single 
call to the networking library. 

Second, we provide a stream unpacking library. This library de- 
codes an already serialized representation of a sequence of com- 
mands and dispatches those commands to a given SPU. This library 
is primarily used by Chromium’s network server to handle incom- 
ing network traffic, but it can also be used by SPUs that need to 
locally buffer a portion of a stream in order to perform more global 
analysis or make multiple passes over that portion. 

The third is a point-to-point connection-based networking ab- 
straction. This library abstracts the details of the underlying trans- 
port mechanism from the caller; we have implemented this API on 
top of TCPAP and Myrinet. In addition, the library can be used by 
SPUs and applications to communicate with each other along chan- 
nels other than those implied by the configuration graph described 
in section 3.1. This out-of-band communication allows complex 
compositing SPUs to be built, such as the one described in sec- 
tion 4.1. 

Finally, Chromium includes a complete OpenGL state tracker. 
In addition to maintaining the entire OpenGL state, this library can 
efficiently compute the difference between two graphics contexts, 
generating a call to a given SPU for every discrepancy found. This 
efficient context differencing operation is due to a hierarchical rep- 
resentation described by Buck et a1 [3]. 

In addition to these support libraries, Chromium provides a num- 
ber of SPUs that can be used as is or extended to realize the de- 
sired stream transformation. Eleven of Chromium’s most useful 
SPUs arc shown in table 1, and new specialized SPUs are frequently 
added to the repository. 

3.6 Realizing Parallel Rendering Architectures 

We now present two examples of parallel rendering architectures 
that can be realized using Chromium. As described by Molnar et 
al., parallel rendering architectures can be classified according to 
the point in the graphics pipeline at which data is “sorted” from an 
object-parallel distribution to an image-parallel distribution [16]. 

The first configuration, shown in figure 2, shows a sort-first 
graphics architecture that functions identically to WireGL. As in 
figure 1, we use the t i l e s o r t  SPU to sort the streams into tiles. 
Each intermediate server serializes its incoming streams and passes 
the result to the readback SPU. The readback SPU inherits from 
the render SPU using the mechanism described in section 3.4, so 
the streams are rendered on the locally housed graphics hardware. 
However, the readback SPU provides its own implementation of 
SwapBuf f ers, so at the end of the frame it extracts the framebuffer 
and uses glDrawPixels to pass the pixel data to another SPU. In 
the figure, each pixel array is passed to a send SPU, which trans- 
mits the data to a final server for tile reassembly. Each readback 
SPU is configured at startup to know where its tiles should end up 
in the final display; these coordinates are passed to the send SPU 
using glRasterPos. The readback SPU also uses Igehy’s parallel 

Figure 2: Chromium configured as a complete WircGL re- 
placement. A parallel application drives a tiled display using 
the sort-first logic in the t i l e s o r t  SPU. Imagery is then read 
back from the servers managing those tiles and sent to a final 
compositing server for display. 

graphics synchronization extensions [IO] to ensure that the tiles all 
arrive at their destination before the final rendering server displays 
its results. This final tile reassembly step could also be performed 
using custom hardware such as Lightning-2 [33]. 

A dramatically different architecture is shown in figure 3. In 
this figure, the readback SPU is loaded directly by the applica- 
tions. Recall that the readback SPU dispatches all of the OpenGL 
API directly to the underlying graphics hardware, so the application 
running in this configuration benefits from the 111 performance of 
local 3D acceleration. In this case, the readback SPU is configured 
to extract both the color and depth buffers, sending them both to a 
final compositing server along with the appropriate OpcnGL com- 
mands to perform a depth composite. In contrast to WireGL, this is 
a sort-last architecture. In practice, having many full framebuffers 
arriving at a single display server would be a severe bottleneck, so 
this architecture is rarely used. In addition, when doing depth com- 
positing in Chromium, it can be beneficial to write a special SPU 
to perform the composite in software, because compositing depth 
images in OpenGL requires using the stencil buffer in a way that is 
quite slow on many architectures. A more advanced (and practical) 
Chromium-based sort-last architecture is presented in section 4.1. 

Because Chromium provides a virtual graphics pipeline with a 
parallel i n t e h e ,  the parallel application in figure 3 could be run 
unmodified on the sort-first architecture in figure 2 simply by speci- 
fying a different configuration DAG. The architectures may provide 
slightly different semantics (e.g., the sort-last architecture cannot 
guarantee ordering constraints between the clients), but the appli- 
cation need not be aware of the change. 

4 Results 

In this section, we present three different Chromium usage scenar- 
ios: a parallel volume renderer used to interactively explore a large 
volumetric dataset, the reintegration of an application’s graphics 
stream into its original user interface on a high-resolution display 

4 
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SPU Description 
e r r o r  Prints a fatal error when any OpenGL function is called. This SPU is implicitly the parent of any SPU 

that does not specify otherwise. This way, SPUs that accidentally fail to implement a necessary function 
will emit a meaninghl error message rather than crashing or *ling in other ways that can be difficult to 
debug. 
Measures the frame rate of the stream as it passes by. This is useful for measuring the performance at 
various places in a communication graph without instrumenting each SPU separately. 
Silently discards all OpcnGL calls, which can be a used to replace the render SPU to factor out rendering 
time when measurina uerformance. 

framerate 

nop 

passthrough Passes all functions to the next SPU in a node’s local chain. Many SPUs will inherit from the passthrough 
SPU. allowinn them to modifi onlv a small subset of the entire ObenGL API. 

~~ 

p r i n t  

readback 

Dumps a human-readable log of all OpenGL calls and their arguments to a file. SPU debugging often 
involves liberal application of the p r i n t  SPU and some post-processing of the resulting logs. 
Transforms a stream of commands into a single image. The readback SPU can be configured to extract 
color andlor depth, and also to include commands that position the resulting image at an arbitrary offset 
using glRasterPos. 
Passes all OpenGL calls directly to the graphics hardware, producing an image in a window. Typically the 
render SPU is used at every node that does not generate any new streams. 
Renders a stream and saves an image file for each h e .  This can be used to make frame-by-frame movies 
of any OpenGL application. 

render 

savef rame 

send Transmits a serialized representation of the entire stream to a server. Functions that query the OpenGL 
state or have a non-void return tme will require a round-trip message using this SPU. 

t i l e s o r t  
vertexarray 

Sorts a single stream into tiles, and sends specialized streams to multiple servers managing those tiles. 
Removes uses of OpenGL vertex arrays by converting those calls into sequences of standard OpcnGL 
functions. This can be usefbl for SPUs that need to guarantee that the data provided to their functions will 
persist over time. 

Table 1 : SPUs provided by Chromium. These SPUs can be used by any node in a cluster, and can be extended and combined to perform 
different stream transformations. 

Chromium Server 

Rrtdu 

Figure 3: Another possible Chromium configuration. In this 
example, nodes in a parallel application render their portion of 
the scene directly to their local hardware. The color and depth 
buffers arc then read back and transmitted to a final composit- 
ing server, where they are combined to produce the final im- 
age. 

device, and a stream transformation to achieve a non-photorealistic 
drawing style. 

4.1 Parallel Volume Rendering 

Our volume rendering application uses 3D textures to store vol- 
umes and renders them with view-aligned slicing polygons, com- 
posited from back to front. Using Stanford’s Real-Time Shading 
Language [23], we can implement different classification and shad- 
ing schemes using the latest programmable graphics hardware, such 
as NVIDIA’s GeForce3. Small shaders can easily exhaust these 
cards’ resources; for example, a shader that implements a simple 
2D transfer function and a specular shading model requires two 3D 
texture lookups, one 2D texture lookup (dependent on one of the 
3D lookups), and all eight register combiners. 

Because we store our volumes as textures, the maximum size of 
the volume that can be rendered is limited by the amount of avail- 
able texture memory. In practice, on a single GeForce3 with 64 MEI 
of texture memory, the largest volume that can be rendered with the 
shader described above is 2 5 6 x 2 5 6 ~  128. In addition, the speed of 
volume rendering with 3D textures is limited by the fill rate of our 
graphics accelerator. While the theoretical fill rate of the GeForce3 
is 800 Mpix/sec, complex fragment processing greatly decreases 
the attainable performance. Depending on the complexity of the 
shader being used, we achieve between 42 and 190 Mpix/sec, or 
roughly 5% to 24% of the GeForce3’s theoretical peak fill rate. 

Both of these limitations can be mitigated by parallelizing the 
rendering across a cluster. We first divide the volume among the 
nodes in our cluster. Each node renders its subvolume on locally 
housed graphics hardware using the binaryswap SPU, which com- 
posites the resulting framebuffers using the “binary swap” tech- 
nique described by Ma et a1 [ 121. In this technique, rendering nodes 
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onal. Today’s time-varying volumetric datasets can easily exceed 
30 terabytes in size. We intend to build a new parallel rendering 
application designed specifically for interactively visualizing these 
datasets on a cluster, using Chromium as the underlying transport, 
rendering, and cornpositing mechanism. 

We would also like to explore the possibilities afforded by 
non-invasive analysis of graphics API streams. It has already 
been shown that some non-photorealistic rendering styles can be 
achieved this way; we intend to apply stream transformations and 
analysis to other domains. One possibility is the automatic real- 
time generation of cutaway and exploded views of objects. We be- 
lieve that by allowing such views, we can greatly enhance a user’s 
ability to understand and visualize complex 3D spatial relationships 
between objects. Furthermore, graphics stream manipulation need 
not be restricted to new drawing styles. By visualizing the graphics 
state itself alongside a running program and its source code, an ex- 
tremely use l l  debugging tool could be created. Such a tool could 
attempt to automatically answer one of the most challenging ques- 
tions in computer graphics: “Why is my window black?”. Tools 
that analyze the graphics stream rather than modi@ it could also be 
used for on-the-fly performance analysis. 

Most of all, we hope that Chromium will be adopted as a com- 
mon low-level mechanism for enabling new graphics algorithms, 
particularly for clusters. If this happens, research results in cluster 
graphics can more easily be applied to existing problems outside the 
original researcher’s lab. Chromium is a completely open-source 
project that supports both Microsoft Windows and several variants 
of UNIX. 

6 Conclusions 

We have described Chromium, a flexible framework for manipulat- 
ing streams of graphics API commands on clusters of workstations. 
Chromium’s stream processors can be configured to provide a sort- 
first parallel rendering architecture with a parallel interface, or a 
sort-last architecture capable of handling most of the same appli- 
cations. Chromium’s flexibility makes it an ideal launching point 
for new research in parallel rendering systems, particularly those 
that target clusters of commodity hardware. In addition, it is likely 
that Chromium’s stream-processing model can be applied to other 
problems in visualization and computer illustration. 
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We describe Chromium, a system for manipulating streams of graphics API commands on clusters 
of workstations. Chromium’s stream filters can be arranged to create sort-first and sort-last parallel 
graphics architectures that, in many cases, support the same applications while using only commodity 
graphics accelerators. In addition, these stream filters can be extended programmatically, allowing 
the user to customize the stream transformations performed by nodes in a cluster. Because our stream 
processing mechanism is completely general, any cluster-parallel rendering algorithm can be either 
implemented on top of or embedded in Chromium. In this paper, we give examples of real-world 
applications that use Chromium to achieve good scalability on clusters of workstations, and describe 
other potential uses of this stream processing technology. By completely abstracting the underlying 
graphics architecture, network topology, and API command processing semantics, we allow a variety 
of applications to run in different environments. 
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